PHYSICS INDUCTION

www.physicsinduction.com

SHORT NOTES: CLASS 9 CHAPTER 1: NUMBER SYSTEMS

CHAPTER I. NUMBER 3131

REAL NUMBERS:

- a) Real numbers and imaginary numbers together form number systems.
- **b)** Real numbers are the set of natural numbers, whole numbers, integers, rational and irrational numbers. Denoted by R

1. RATIONAL NUMBERS:

- a) These are those numbers that can be expressed in the form of fractions i.e., p/q where p and q are integers and $q\neq 0$.
- **b)** For example: 35,–29,–34 etc. http://www.physicsinduction.com
- c) Denoted by Q
- d) There are infinitely many rational numbers between any two rational numbers.

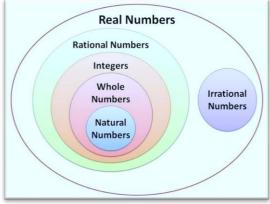
2. IRRATIONAL NUMBERS:

a) Numbers which are not rational i.e., which cannot be expressed in the form of p/q where p and q are integers and $q \ne 0$. For example: e.g., $\sqrt{2}$, $\sqrt{5}$, π , ...etc.

3. NATURAL NUMBERS:

- a) These are counting numbers starting from 1.
- **b)** The set {1,2,3,4,5,6,7....} is called natural numbers.
- c) Denoted by N

4. WHOLE NUMBERS:


- a) These are the set of natural numbers including 00.
- **b)** The set {0,1,2,3,4,5,6....} is called whole numbers.
- c) Denoted by W

5. INTEGERS:

- a) These are the set of negative numbers, positive numbers, and 00 excluding fractions.
- **b)** The set {....-3,-2,-1,0,1,2,3....} is called integers.
- c) Denoted by Z
- **6. PRIME NUMBERS:** No factors other than 1 and the number itself.
- 7. COPRIMES: Two numbers a and b are said to be coprimes if HCF(a, b) = 1
- **8. COMPOSITE NUMBERS:** More than two factors.

Note:

- a) All integers are rational numbers. http://www.physicsinduction.com
- b) All whole numbers are integers but all integers are not whole numbers.
- c) All natural numbers are whole numbers but all whole numbers are not natural numbers

http://www.physicsinduction.com

S TO THE STATE OF THE STATE OF

PHYSICS INDUCTION

www.physicsinduction.com

DECIMAL REPRESENTATION OF A RATIONAL NUMBER:

- 1. Terminating decimal expression: $\frac{7}{8}$ = 0.875
- 2. Non-terminating, repeating decimal expression: $\frac{9}{11} = 0.818181...$
- 3. Non-terminating, non-repeating decimal expression: $\pi = 3.141592653589793283...$
- Decimal expressions of rational numbers are either terminating or non-terminating, repeating.
- Decimal expressions of irrational numbers are either non-terminating and non-repeating.

HOW TO FIND RATIONAL NUMBERS:

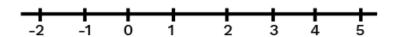
$$q_{1} = \frac{1}{2}(a+b)$$

$$q_{2} = \frac{1}{2}(a+q_{1})$$

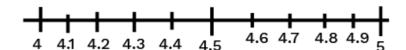
$$q_{3} = \frac{1}{2}(a+q_{2})$$

$$q_{3} = \frac{1}{2}(a+q_{2})$$

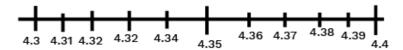
$$q_{3} = \frac{1}{2}(a+q_{2})$$


$$q_{4} = \frac{1}{2}(a+q_{2})$$

$$q_{5} = \frac{1}{2}(a+q_{2})$$


$$q_{6} = \frac{1}{2}(a+q_{2})$$

http://www.physicsinduction.com


REPRESENTING REAL NUMBERS ON THE NUMBER LINE/SUCCESSIVE MAGNIFICATION:

Magnifying between 4 and 5

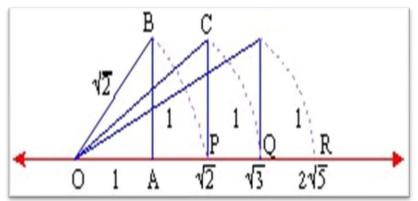
Magnifying between 4.3 and 4.4

Magnifying between 4.37 and 4.38

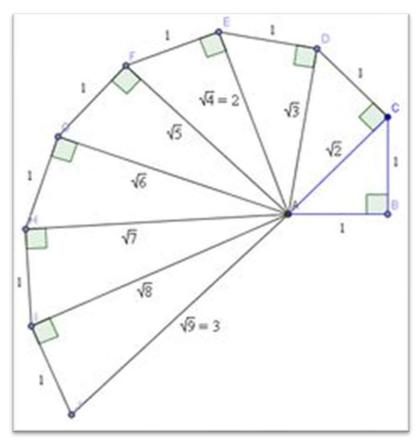
IRRATIONAL NUMBERS ON THE NUMBER LINE:

TO DRAW: V2 on the number line. http://www.physicsinduction.com

STEPS OF CONSTRUCTION:


- i. Draw a number line.
- ii. Mark the number 1 on the number line as point A.
- iii. Draw a perpendicular at A using a compass such that ray AX ∟ OA
- iv. With A as centre and radius 1 unit, draw an arc at AX. Mark the point as B
- v. Join OB. OB = $\sqrt{2}$ units. http://www.physicsinduction.com

With O as center and OB as radius, draw an arc, cutting the number line at point P. OP = V2 units.


PHYSICS INDUCTION

www.physicsinduction.com

http://www.physicsinduction.com

OPERATIONS ON REAL NUMBERS:

Real numbers can be added, subtracted, multiplied, and divided.

- Rational numbers satisfy the commutative, associative, and distributive laws for addition and multiplication. Moreover, if we add, subtract, multiply, or divide (except by zero) two rational numbers. We still get a rational number (i.e., rational numbers are 'closed' with respect to addition, subtraction, multiplication, and division). http://www.physicsinduction.com
- Irrational numbers also satisfy the commutative, associated, and distributive laws for addition and multiplication. However, the sum, difference, quotients, and products of irrational numbers are not always irrational.

e.g.,
$$\sqrt{5} + (-\sqrt{5}) = 0$$

 $\sqrt{15}/\sqrt{15} = 1$ is rational.

√3 is irrational.

Hence, $(5 + \sqrt{3})$ is also irrational ($\sqrt{3}$ has a non-terminating, non-recurring decimal expansion).

PHYSICS INDUCTION

www.physicsinduction.com

SOME COMMON FACTS OF OPERATION ON REAL NUMBERS ARE: http://www.physicsinduction.com

- a) The sum or difference between a rational number and an irrational number is irrational.
- **b)** The product or quotient of a non-zero rational number with an irrational number is irrational.
- c) If we add, subtract, multiply, or divide two irrationals, then the result may be rational or irrational.

RATIONALIZING DENOMINATOR:

- a) When the denominator is irrational then the process of converting the denominator to rational is called rationalizing the denominator.
- **b)** It is obtained by multiplying the numerator and denominator by the irrational term present in the denominator but with the opposite sign.
- c) To rationalise the denominator of $1/\sqrt{a+b}$, it is multiplied by $\sqrt{a-b}/\sqrt{a-b}$, where a and b are integers. http://www.physicsinduction.com

LAWS OF EXPONENTS FOR REAL NUMBERS:

a)
$$x^0 = 1$$

b)
$$x^{-m} = 1/x^m$$

c)
$$x^{m} \cdot x^{n} = x^{m+n}$$

d)
$$x^{m}/x^{n} = x^{m-n}$$

e)
$$(x^{m})^{n} = x^{mn}$$

f)
$$X^{m}y^{m} = (xy)^{m}$$

http://www.physicsinduction.com

http://www.physicsinduction.com

http://www.physicsinduction.com