PHYSICS INDUCTION

www.physicsinduction.com

CLASS X : ASSIGNMENT : CHAPTER-2 : POLYNOMIALS : MATHEMATICS

- 1. What is the degree of a constant and a zero polynomial?
- 2. Classify the following as linear, constant, quadratic, cubic, or bi-quadratic polynomials:
 - (i) p(x) = 0

(vi) $r(x) = 3x^3 + 4x^2 + 5x - 7$

(ii) $g(x) = 2x^3 - 7x + 4$

(vii) s(x) = 3/2

(ii) 6(A) 2A 7A

(vii) 3(x) - 3/2

(iii) $h(x) = -3x + \frac{1}{2}$

(viii) t(x) = 3x

(iv) $f(x) = 2x^2 - x + 4$

- (ix) $u(x) = 7x^4 + 4x^3 + 3x 2$
- (v) $q(x) = 10x^4 7x^3 + 8x^2 12x 20$
- (x) $v(x) = x + x^2 + 4$
- 3. The graphs of y = p(x) is given in the figures below for some polynomial p(x). Find the number of zeroes of p(x) in each case.

- 4. Draw the graphs of the following polynomials:
 - (i) p(x) = 2x 5
- (iv) $r(x) = x^2 6x + 9$
- (vii) $t(x) = x^3 2x^2$

- (ii) $q(x) = x^2 2x 8$
- (v) $u(x) = x^3$
- (iii) $f(x) = 3 2x x^2$
- (vi) $w(x) = x^3 4x$
- 5. Find the zeroes of the following polynomials:
 - (i) $f(x) = x^2 1$

(vii) $x^6 - 7x^3 - 8$

(ii) $g(x) = 3x^2 - 2$

(viii) $4\sqrt{3} x^2 + 5x - 2\sqrt{3}$

(iii) $h(x) = x^2$

(ix) $v(x) = x^3 + 13x^2 + 32x + 20$

(11)

(x) $w(x) = 4x^3 + 20x^2 + 33x + 18$

(iv) p(x) = lx + m

(xi) $u(y) = y^3 - 7y + 6$

(v) q(y) = 2y(vi) r(t) = at

- (xii) $t(x) = x^3 + 2x^2 x 2$
- 6. Find a quadratic polynomial whose zeroes are given below:
 - (i) -2, 4

(iii) -1/3, 3/2

(v) ± √15

(ii) ½, ½

- (iv) 0, -2
- 7. Find the zeroes of the given polynomials and verify the relationships between the zeroes and the coefficients:
 - (i) $x^2 + 7x + 12$

(iii) $abx^2 + (b^2 - ac) x - bc$

(ii) $4\sqrt{3}x^2 + 5x - 2\sqrt{3}$

- (iv) $x^2 (\sqrt{3} + 1) x + \sqrt{3}$
- 8. If one of the roots(zeroes) of the equation $2x^2 8x m = 0$ is 5/2. Find the other root and the value of m.
- 9. If the sum of the zeroes of the quadratic polynomial $f(t) = kt^2 + 2t + 3k$ equals their product, find the value of k.
- 10. If x = 0 and x = 2 are the zeroes of the polynomials $f(x) = 2x^3 5x^2 + ax + b$. Find the values of a and b.
- 11. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 4x 4$. Find the value of the

PHYSICS INDUCTION

www.physicsinduction.com

following:

(i)
$$\alpha^2 + \beta^2$$

(ii)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

(iii) $\alpha^3 + \beta^3$

(iv)
$$\frac{1}{\alpha^3} + \frac{1}{\beta^3}$$

$$(v) \qquad \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$$

(vii)
$$\alpha^4 + \beta^4$$

(viii)
$$\alpha - \beta$$

(ix)
$$\frac{1}{\alpha} - \frac{1}{\beta}$$

(x)
$$\frac{1}{\alpha} + \frac{1}{\beta} - 2\alpha\beta$$

(xi)
$$\alpha^2\beta + \alpha\beta^2$$

12. If
$$\alpha$$
 and β are the zeroes of a quadratic polynomial such that $\alpha + \beta = 24$ and $\alpha - \beta = 8$, Find the quadratic polynomial having α and β as its zeroes.

- 13. If α and β are the zeroes of a quadratic equation $x^2 x 2 = 0$. Form an equation whose zeroes are $(2\alpha + 1)$ and $(2\beta + 1)$.
- 14. If α and β are the zeroes of a quadratic equation $2x^2 5x + 7 = 0$. Form an equation whose zeroes are $(2\alpha + 3\beta)$ and $(3\alpha + 2\beta)$.
- 15. If α and β are the zeroes of a quadratic equation $x^2 1 = 0$. Form an equation whose zeroes are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$.
- 16. If α and β are the zeroes of a quadratic equation $x^2 3x 2 = 0$. Form an equation whose zeroes are $\frac{1}{2\alpha+\beta}$ and $\frac{1}{2\beta+\alpha}$.
- 17. Find a quadratic equation whose zeroes are reciprocal of the zeroes of the equation ax² + bx + c
- 18. If α and β are the zeroes of a quadratic polynomial $f(x) = x^2 5x + k$, such that $(\alpha \beta) = 1$, find the value of k.
- 19. If α and β are the zeroes of a quadratic polynomial $f(x) = kx^2 + 4x + 4$ such that $\alpha^2 + \beta^2 = 24$, find the value of k.
- 20. If α and β are the zeroes of a quadratic polynomial $f(x) = 2x^2 + 5x + k$ satisfying the relation α^2 + $\beta^2 + \alpha\beta = 21/4$, then find the value of k.
- 21. If the sum of the zeroes of the equation $\frac{1}{x+a} + \frac{1}{x+b} = \frac{1}{c}$ is zero, prove that the product of the zeroes is $-\frac{1}{2}(a^2+b^2)$.
- 22. If the ratio of the zeroes of the equation $lx^2 + nx + n = 0$ is p: q, Prove that $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{h}{l}} = 0$
- 23. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i)
$$p(x) = x^3 + 4x^2 - 3x + 10$$

$$g(x) = x + 4$$

(ii)
$$p(x) = 4x^3 - 12x^2 + 14x - 3$$

$$g(x) = x + 4$$
$$g(x) = 2x - 1$$

(iii)
$$p(x) = x^4 - 3x^2 + 4$$

$$g(x) = x - 2$$

(iv)
$$p(x) = 9x^3 - 3x^2 + x - 5$$

$$g(x) = x - 2/3$$

(v)
$$p(x) = x^3 + 4x^2 - 3x + 10$$

$$g(x) = x + 4$$

- 24. Verify that 3, -1, and -1/3 are the zeroes of the cubic polynomial $p(x) = 3x^3 5x^2 11x 3$ and then verify the relationship between the zeroes and the coefficients.
- 25. Find the zeroes of the polynomial $f(x) = x^3 5x^2 16x + 80$, if its two zeroes are equal in magnitude but opposite in sign.
- 26. Find the zeroes of the polynomial $f(x) = x^3 5x^2 2x + 24$, if it is given that the product of its two
- 27. Find the zeroes of the polynomial $f(x) = 2x^4 3x^3 3x^2 + 6x 2$, if its two zeroes are $\pm \sqrt{2}$.