Physics Induction

NCERT EXEMPLAR QUESTIONS

Exercise 2.1

Choose the correct answer from the given four options in the following questions:

1. If one of the zeroes of the quadratic polynomial (k–1) x2 + k x + 1 is –3, then the value of is

(A) 4/3 (B) -4/3 (C) 2/3 (D) -2/3

Solution:

(A) 4/3

Explanation:

According to the question,

-3 is one of the zeros of quadratic polynomial (k-1)x2+kx+1

Substituting -3 in the given polynomial,

(k-1)(-3)²+k(-3)+1=0

(k-1)9+k(-3)+1 = 0

9k-9-3k+1=0

6k-8=0

k=8/6

Therefore, k=4/3

Hence, option (A) is the correct answer.

2. A quadratic polynomial, whose zeroes are –3 and 4, is

(A) x2 – + 12 (B) x2 + + 12

(C) (x2/2)-(x/2)-6 (D) 2x2 + 2–24

Solution:

(C) (x2/2)-(x/2)-6

Explanation:

Sum of zeroes, α+ β= -3+4 =1

Product of Zeroes, αβ = -3× 4 = -12

Therefore, the quadratic polynomial becomes,

x²- (sum of zeroes)x+(product of zeroes)

= x²- (α+ β)x+(αβ)

= x² – (1)x + (-12)

= x² – x -12

divide by 2, we get

= x²/2 – x/2 -12/2

= x²/2 – x/2 -6

Hence, option (C) is the correct answer.

3. If the zeroes of the quadratic polynomial x2 + (+ 1) are 2 and –3, then

(A) = –7, = –1 (B) = 5, = –1

(C) = 2, = – 6 (D) = 0, = – 6

Solution:

(D) a = 2, = – 6

Explanation:

According to the question,

x² + (a+1)x + b

Given that, the zeroes of the polynomial = 2 and -3,

When x = 2

2² + (a+1)(2) + b = 0

4 + 2a+2 + b = 0

6 + 2a+b = 0

2a+b = -6 —– (1)

When x = -3,

(-3)² + (a+1)(-3) + b = 0

9 – 3a-3 + b = 0

6 – 3a+b = 0

-3a+b = -6 —– (2)

Subtracting equation (2) from (1)

2a+b – (-3a+b) = -6-(-6)

2a+b+3a-b = -6+6

5a = 0

a = 0

Substituting the value of ‘a’ in equation (1), we get,

2a + b = -6

2(0) +b = -6

b = -6

Hence, option (D) is the correct answer.

4. The number of polynomials having zeroes as –2 and 5 is

(A) 1 (B) 2

(C) 3 (D) more than 3

Solution:

(D) more than 3

Explanation:

According to the question,

The zeroes of the polynomials = -2 and 5

We know that the polynomial is of the form,

p(x) = ax2 + bx + c.

Sum of the zeroes = – (coefficient of x) ÷ coefficient of x2 i.e.

Sum of the zeroes = – b/a

– 2 + 5 = – b/a

3 = – b/a

b = – 3 and a = 1

Product of the zeroes = constant term ÷ coefficient of x2 i.e.

Product of zeroes = c/a

(- 2)5 = c/a

– 10 = c

Substituting the values of a, b and c in the polynomial p(x) = ax2 + bx + c.

We get, x2 – 3x – 10

Therefore, we can conclude that x can take any value.

Hence, option (D) is the correct answer.

5. Given that one of the zeroes of the cubic polynomial ax3 + bx2 + cx is zero, the product of the other two zeroes is

(A) (–c/a) (B) c/a

(C) 0 (D) (–b/a)

Solution:

(B) (c/a)

Explanation:

According to the question,

We have the polynomial,

ax3 + bx2 + cx d

We know that,

Sum of product of roots of a cubic equation is given by c/a

It is given that one root = 0

Now, let the other roots be α, β

So, we get,

αβ + β(0) + (0)α = c/a

αβ = c/a

Hence the product of other two roots is c/a

Hence, option (B) is the correct answer


Exercise 2.2

1. Answer the following and justify:

(i) Can x2 – 1 be the quotient on division of x6 + 2x3 + – 1 by a polynomial in of degree 5?

Solution:

No, x2 – 1 cannot be the quotient on division of x6 + 2x3 + x – 1 by a polynomial in x of degree 5.

Justification:

When a degree 6 polynomial is divided by degree 5 polynomial,

The quotient will be of degree 1.

Assume that (x2 – 1) divides the degree 6 polynomial with and the quotient obtained is degree 5 polynomial (1)

According to our assumption,

(degree 6 polynomial) = (x2 – 1)(degree 5 polynomial) + r(x) [ Since, (a = bq + r)]

= (degree 7 polynomial) + r(x) [ Since, (x2 term × x5 term = x7 term)]

= (degree 7 polynomial)

From the above equation, it is clear that, our assumption is contradicted.

x2 – 1 cannot be the quotient on division of x6 + 2x3 + x – 1 by a polynomial in x of degree 5

Hence Proved.

(ii) What will the quotient and remainder be on division of ax2 + bx by px3 + qx2 + rx sp ≠ 0?

Solution:

Degree of the polynomial px3 + qx2 + rx + s is 3

Degree of the polynomial ax2 + bx + c is 2

Here, degree of px3 + qx2 + rx + s is greater than degree of the ax2 + bx + c

Therefore, the quotient would be zero,

And the remainder would be the dividend = ax2 + bx + c.

(iii) If on division of a polynomial (x) by a polynomial (x), the quotient is zero, what is the relation between the degrees of (x) and (x)?

Solution:

We know that,

p(x)= g(x) × q(x)+r(x)

According to the question,

q(x) =0

When q(x)=0, then r(x) is also = 0

So, now when we divide p(x) by g(x),

Then p(x) should be equal to zero

Hence, the relation between the degrees of p (x) and g (x) is the degree p(x)<degree g(x)

(iv) If on division of a non-zero polynomial (x) by a polynomial (x), the remainder is zero, what is the relation between the degrees of (x) and (x)?

Solution:

In order to divide p(x) by g(x)

We know that,

Degree of p(x) > degree of g(x)

or

Degree of p(x)= degree of g(x)

Therefore, we can say that,

The relation between the degrees of (x) and (x) is degree of p(x) > degree of g(x)

(v) Can the quadratic polynomial x2 + kx have equal zeroes for some odd integer > 1?

Solution:

A Quadratic Equation will have equal roots if it satisfies the condition:

b² – 4ac = 0

Given equation is x² + kx + k = 0

a = 1, b = k, x = k

Substituting in the equation we get,

k² – 4 ( 1 ) ( k ) = 0

k² – 4k = 0

k ( k – 4 ) = 0

k = 0 , k = 4

But in the question, it is given that k is greater than 1.

Hence the value of k is 4 if the equation has common roots.

Hence if the value of k = 4, then the equation ( x² + kx + k ) will have equal roots.


Exercise 2.3

Find the zeroes of the following polynomials by factorisation method.

1. 4x2 – 3– 1

Solution:

4x2 – 3– 1

Splitting the middle term, we get,

4x2-4x+1x-1

Taking the common factors out, we get,

4x(x-1) +1(x-1)

On grouping, we get,

(4x+1)(x-1)

So, the zeroes are,

4x+1= 0⇒ 4x=-1 ⇒x= (-1/4)

(x-1) = 0 ⇒ x=1

Therefore, zeroes are (-1/4) and 1

Verification:

Sum of the zeroes = – (coefficient of x) ÷ coefficient of x2

α + β = – b/a

1 – 1/4 = – (- 3)/4 = ¾

Product of the zeroes = constant term ÷ coefficient of x2

α β = c/a

1(- 1/4) = – ¼

– 1/4 = – 1/4

2. 3x2 + 4– 4

Solution:

3x2 + 4x – 4

Splitting the middle term, we get,

3x2 + 6x – 2x – 4

Taking the common factors out, we get,

3x(x+2) -2(x+2)

On grouping, we get,

(x+2)(3x-2)

So, the zeroes are,

x+2=0 ⇒ x= -2

3x-2=0⇒ 3x=2⇒x=2/3

Therefore, zeroes are (2/3) and -2

Verification:

Sum of the zeroes = – (coefficient of x) ÷ coefficient of x2

α + β = – b/a

– 2 + (2/3) = – (4)/3

= – 4/3 = – 4/3

Product of the zeroes = constant term ÷ coefficient of x2

α β = c/a

Product of the zeroes = (- 2) (2/3) = – 4/3

3. 5t2 + 12+ 7

Solution:

5t2 + 12t + 7

Splitting the middle term, we get,

5t2 +5t + 7t + 7

Taking the common factors out, we get,

5t (t+1) +7(t+1)

On grouping, we get,

(t+1)(5t+7)

So, the zeroes are,

t+1=0 ⇒ y= -1

5t+7=0 ⇒ 5t=-7⇒t=-7/5

Therefore, zeroes are (-7/5) and -1

Verification:

Sum of the zeroes = – (coefficient of x) ÷ coefficient of x2

α + β = – b/a

(- 1) + (- 7/5) = – (12)/5

= – 12/5 = – 12/5

Product of the zeroes = constant term ÷ coefficient of x2

α β = c/a

(- 1)(- 7/5) =  7/5

7/5 =  7/5

4. t3 – 2t2 – 15t

Solution:

t3 – 2t2 – 15t

Taking t common, we get,

t ( t2 -2t -15)

Splitting the middle term of the equation t2 -2t -15, we get,

t( t2 -5t + 3t -15)

Taking the common factors out, we get,

t (t (t-5) +3(t-5)

On grouping, we get,

t (t+3)(t-5)

So, the zeroes are,

t=0

t+3=0 ⇒ t= -3

t -5=0 ⇒ t=5

Therefore, zeroes are 0, 5 and -3

Verification:

Sum of the zeroes = – (coefficient of x2) ÷ coefficient of x3

α + β + γ = – b/a

(0) + (- 3) + (5) = – (- 2)/1

= 2 = 2

Sum of the products of two zeroes at a time = coefficient of x ÷ coefficient of x3

αβ + βγ + αγ = c/a

(0)(- 3) + (- 3) (5) + (0) (5) = – 15/1

= – 15 = – 15

Product of all the zeroes = – (constant term) ÷ coefficient of x3

αβγ = – d/a

(0)(- 3)(5) = 0

  1. = 0

5. 2x2 +(7/2)+3/4

Solution:

2x2 +(7/2)+3/4

The equation can also be written as,

8x2+14x+3

Splitting the middle term, we get,

8x2+12x+2x+3

Taking the common factors out, we get,

4x (2x+3) +1(2x+3)

On grouping, we get,

(4x+1)(2x+3)

So, the zeroes are,

4x+1=0 ⇒ x = -1/4

2x+3=0 ⇒ x = -3/2

Therefore, zeroes are -1/4 and -3/2

Verification:

Sum of the zeroes = – (coefficient of x) ÷ coefficient of x2

α + β = – b/a

(- 3/2) + (- 1/4) = – (7)/4

= – 7/4 = – 7/4

Product of the zeroes = constant term ÷ coefficient of x2

α β = c/a

(- 3/2)(- 1/4) = (3/4)/2

3/8 = 3/8


Exercise 2.4

1. For each of the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of these polynomials by factorisation.

(i) (–8/3), 4/3

(ii) 21/8, 5/16

(iii) -2√3, -9

(iv) (-3/(2√5)), -½

Solution:

(i) Sum of the zeroes = – 8/3

Product of the zeroes = 4/3

P(x) = x2 – (sum of the zeroes) + (product of the zeroes)

Then, P(x)= x2 – (-8x)/3 + 4/3

P(x)= 3x2 + 8x + 4

Using splitting the middle term method,

3x2 + 8x + 4 = 0

3x2 + (6x + 2x) + 4 = 0

3x2 + 6x + 2x + 4 = 0

3x(x + 2) + 2(x + 2) = 0

(x + 2)(3x + 2) = 0

⇒ x = -2, -2/3

(ii) Sum of the zeroes = 21/8

Product of the zeroes = 5/16

P(x) = x2 – (sum of the zeroes) + (product of the zeroes)

Then, P(x)= x2 – 21x/8 + 5/16

P(x)= 16x2 – 42x + 5

Using splitting the middle term method,

16x2 – 42x + 5 = 0

16x2 – (2x + 40x) + 5 = 0

16x2 – 2x – 40x + 5 = 0

2x (8x – 1) – 5(8x – 1) = 0

(8x – 1)(2x – 5) = 0

⇒ x = 1/8, 5/2

(iii) Sum of the zeroes = – 2√3

Product of the zeroes = – 9

P(x) = x2 – (sum of the zeroes) + (product of the zeroes)

Then, P(x) = x2 – (-2√3x) – 9

Using splitting the middle term method,

x2 + 2√3x – 9 = 0

x2 + (3√3x – √3x) – 9 = 0

x(x + 3√3) – √3(x + 3√3) = 0

(x – √3)(x + 3√3) = 0

⇒ x =  √3, -3√3

(iv) Sum of the zeroes = -3/2√5x

Product of the zeroes = – ½

P(x) = x2 – (sum of the zeroes) + (product of the zeroes)

Then, P(x)= x2  -(-3/2√5x) – ½

P(x)= 2√5x2 + 3x – √5

Using splitting the middle term method,

2√5x2 + 3x – √5 = 0

2√5x2 + (5x – 2x) – √5 = 0

2√5x2 – 5x + 2x – √5 = 0

√5x (2x + √5) – (2x + √5) = 0

(2x + √5)(√5x – 1) = 0

⇒ x = 1/√5, -√5/2

2. Given that the zeroes of the cubic polynomial x3 – 6x2 + 3+ 10 are of the form ab+ 2for some real numbers and b, find the values of and as well as the zeroes of the given polynomial.

Solution:

Given that a, a+b, a+2b are roots of given polynomial x³-6x²+3x+10

Sum of the roots ⇒ a+2b+a+a+b = -coefficient of x²/ coefficient of x³

⇒ 3a+3b = -(-6)/1 = 6

⇒ 3(a+b) = 6

⇒ a+b = 2 ——— (1) b = 2-a

Product of roots ⇒ (a+2b)(a+b)a = -constant/coefficient of x³

⇒ (a+b+b)(a+b)a = -10/1

Substituting the value of a+b=2 in it

⇒ (2+b)(2)a = -10

⇒ (2+b)2a = -10

⇒ (2+2-a)2a = -10

⇒ (4-a)2a = -10

⇒ 4a-a² = -5

⇒ a²-4a-5 = 0

⇒ a²-5a+a-5 = 0

⇒ (a-5)(a+1) = 0

a-5 = 0 or a+1 = 0

a = 5 a = -1

a = 5, -1 in (1) a+b = 2

When a = 5, 5+b=2 ⇒ b=-3

a = -1, -1+b=2 ⇒ b= 3

∴ If a=5 then b= -3

or

If a= -1 then b=3

3. Given that 2 is a zero of the cubic polynomial 6x3 + x2 – 10– 42 , find its other two zeroes.

Solution:

Given, √2 is one of the zero of the cubic polynomial.

Then, (x-√2) is one of the factor of the given polynomial p(x) = 6x³+√2x²-10x- 4√2.

So, by dividing p(x) by x-√2

NCERT Exemplar Solutions for Class 10 Maths Chapter 2-1

6x³+√2x²-10x-4√2= (x-√2) (6x² +7√2x + 4)

By splitting the middle term,

We get,

(x-√2) (6x² + 4√2x + 3√2x + 4)

= (x-√2) [ 2x(3x+2√2) + √2(3x+2√2)]

= (x-√2) (2x+√2)   (3x+2√2)

To get the zeroes of p(x),

Substitute p(x)= 0

(x-√2) (2x+√2)  (3x+2√2)= 0

x= √2 , x= -√2/2 ,x= -2√2/3

Hence, the other two zeroes of p(x) are -√2/2 and -2√2/3